

Multifactor Authentication and Session
Resumption in OpenVPN

Guillaume Destuynder (kang)
Harshvardhan Sharma (harsh1618)
Shivanshu Agrawal (shivanshuag)

Srijan R. Shetty (srijanshetty)

Team
● We’re a group of three undergraduate students currently

at the Indian Institute of Technology Kanpur.
● We like contributing back to the open source

community as much as we can and this is partly what
inspired us to work on MWoS (that and credits for
working on open source, what else can one want. And
yeah, free T-shirts!).

Virtual Private Network

Image Credits: Wikimedia Commons

● Allows two devices to securely
communicate with each other
over a possibly insecure public
network.

● Allows for secure
communications between
different private networks over
an insecure network through
tunnelling

Mozilla and OpenVPN
● Mozilla uses OpenVPN to allow its employees to

securely connect to its Private Network.
● OpenVPN’s MFA model currently has the following

issues:
○ Only one factor of authentication
○ The password field is reused to implement MFA, i.e., enter OTP in

password field. (Thereby motivating the need of true MFA)
○ No session support, user has to enter OTP for every connection

Authentication Modes in OpenVpn

OpenVPN provides for two authentication modes:

● Static Key: In this mode, a key is generated and shared between the
users before the establishment of a tunnel.

● TLS: In this mode, a bidirectional session using certificates is
established. On a successful TLS/SSL authentication, tunnel keys
are established for communication.

Username Password Authentication

OpenVPN also allows users to authenticate
using a username and password. The password
is checked after successful TLS authentication,
during the phase when session keys for the VPN
tunnel are established.

Strong Passwords

Multi-Factor Authentication
● MFA relies on the following factors of authentication:

1. Knowledge Factor : ATM Pins, Passwords
2. Possession Factor : Smart Cards
3. Inherence Factor : Biometrics

● The underlying assumption is that it is difficult to get hold of more
than one of these three factors.

Session Resumption
● Maintaining a cookie on the client side so

that one does not have to authenticate every
time one logs in.

● Cookie should have an expiration time.
● This is the standard flow adopted by most

websites.

Multifactor Authentication

Challenges

● Understanding the architecture of OpenVPN
● Secure Coding
● Backwards Compatibility
● Multiple Possible MFA types and

implementations

MFA Implementation
● Extended the original packet used to

exchange key material between client and
server for establishing session key

● Added MFA username and password fields

Three types Of MFA Methods

● PUSH
○ This will not ask for any credentials from the user.
○ Useful in case of authentication by Push

Notifications to a registered smartphone.

Three types Of MFA Methods

● OTP
○ Only password is asked from the user.

○ Useful in the case when smartphone of the user has
an app which generates the OTP.

○ E.g. Google Authenticator

Three types Of MFA Methods

● User-Pass
○ Both username and password is asked from the user.

○ Useful when need to provide an identifier along with
the OTP.

○ Also for session support in username, password
authentication.

Backwards Compatibility
● Added a flag (bitmask) in the authentication packet header when

compiled with MFA support
● Server side config option

mfa-backward-compat

● When backwards compatibility is enabled, server allows older
clients (or clients with MFA disabled) to bypass MFA

● When disabled, auth fails if MFA is not supported
● Can be enabled in the transition phase when all clients have not

upgraded

Backwards Compatibility

Configuration
● Server:

mfa-method [mfa-type] [script-file-name] [via-env/via-file]
Ex: mfa-method otp auth.pl via-file

mfa-method [method-type]
plugin [plugin-shared-object-file]

● Client:
mfa-method [method-type]

Session Support

Session Support
Generate a token which can be used for session
resumption.

Similar to web-based session resumption
(cookies)

Challenges
Security

● The session token used should be tied to the client’
s identity.

● It should not be possible for any entity other than
the server to generate a valid token for any client
within a reasonable amount of time.

End User Experience
● Entire process should be transparent to the user.
● Enabling support for session resumption should

require minimal changes to the client and server
configuration files.

Challenges

Protocol
● The entire procedure of session resumption should

fit into the existing OpenVPN protocol so as to
maintain backwards compatibility.

Challenges

Implementation
● Server generates a key (48 bytes) on startup.
● On successful auth, the server generates a token

using the key.
● The token and expiry timestamp are sent back to

the client. The client stores them on a local file.
● During next authentication, the timestamp and

the token are sent instead of the MFA
credentials.

● The server verifies that the timestamp and the
token are valid.

Session Token Generation
Preliminary
HMAC (Hash based Message Authentication Code) [RFC 2104]
● Uses a cryptographic hash function to generate a ‘tag’ for a message using a

secret key.
● Both integrity and authenticity of the data can be verified by re-calculating

the HMAC using the same key.

HMAC(K, m) = H((K+opad) + H((K+ipad)+m))
where H: Hash function (e.g. SHA256, MD5)

K: Key, m: message

ipad,opad: padding bytes

+: concatenation

Session Token Generation
A Pseudo-random function (based on RFC 4346 - TLS 1.1) is used
to generate the session token
Session token = PRF((CN + Timestamp), Key)

To generate the PRF, the key K is split into two equal parts K1 and K2

PRF (K, data) = P_MD5(K1, data) ⊕ P_SHA1(K2, data)

P_MD5 and P_SHA1 use HMAC_MD5 and HMAC_SHA1 respectively
to generate arbitrary length outputs

Session Token Verification
● Use timestamp to check if the token has expired
● Generate a token using the client’s CN and the received timestamp.

If it matches the token received from the client, MFA
authentication succeeds.

The token check ensures that the original token was issued to the same
client and the timestamp received is authentic.

No need to store any session information on the server.

Modified Packet

Configuration

Client:
mfa-session-file <filename>

In the absence the above configuration parameter, the user is warned
and session resumption is disabled.

Server:
mfa-session-expiration session-validity (in hours)

Future Work
● Get our work upstreamed.

MFA Demo

Questions

