Lightweight Indexing of Observational
Data in Log-Structured Storage

Sheng Wang, David Maier, Beng Chin Ooi

FIGURE

~ Comparing Random and Sequential Access in Disk and Memory

Random, disk 316 values/sec
Sequential, disk 53.2M values/sec
Random, SSD 1024 values/sec
Sequential, SSD 42 2M values/sec
Random, memory 36.7M values/sec
Sequential, memory 358.2M values/sec

ib 1h Iﬂlﬁa lb ilﬁg ih' lb, ib

Note; Disk tests were carried out on a freshly booted machine (a Windows 2003 server with 64-GB RAM and

eight 15,000-RPM SAS disks in RAIDS configuration) to eliminate the effect of operating-system disk caching.
SSD testused alatestgeneration Intel high-performance SATA SSD,

Preliminaries

Image taken from ACM

http://deliveryimages.acm.org/10.1145/1570000/1563874/jacobs3.jpg

Observational Data

e Data collected from sensors.
e Following properties:
o Velocity: The rate of data ingestion is very high. (write-intensive)
o Immutable: Inherently the data is never changed after storing.
o Continuity: Most sensors measure a continuous variable like
temperature.
e We areinterested in time-range queries (time series analysis) and

value-range queries (anomaly detection)

Data locality

e Temporal locality: The insertion time into the database correlates to
observation time
e Spatial Locality: Sensors nearby each other will have similar values
e Continuity:
o Continuous variable: Functions attains all values between end
points.

o Continuous measurement: maximum change after each step is
bounded.

Log Structured Storage

e Records are appended to a file in insert order. (Excellent write
performance and no random IOs like B+-tree for index maintenance)
e Two types:
o Ordered: Keep records in RAM and sort before flushing to disk.
o Unordered: Directly append to file.
e Authors use LogBase which is an open source unordered log-store.

o Records are broken up into attributes and grouped if needed.

LogBase

TIME SENSORID GROUP Water GROUP Air
ATTRIBUTE ATTRIBUTE | ATTRIBUTE
Salinity Oxygen Air
temperature
9:01 depth Om 16.32 3.36 7.05 Images taken from the paper
9:01 depth 2.4m 22.38 3.28 KEY ATTRIBUTE VALUE TIMESTAMP
9:02 depth Om 16.14 6.98 depth Om Salinity 16.32 9:01
9:02 depth 8m 29.01 2.97 depthOm Oxygen 3.36 9:01
depth 2.4m Salinity 22.38 9:01
Figure 2: Schema logical view depth 24m Oxygen 226 e
depth 8m Oxygen 2.97 9:02
depth 8m Salinity 29.01 9:02
depth Om Salinity 16.14 9:02

Figure 3: Schema physical view

CR-Index

(@idate CR-record D

Data Block CR-record
KEY VALUE SequenceID: sid

R1 2.73 B+Tree e / Boundary Pair: [2.73, 4.21]
R2 2.86 Length: 6

R3 2.90 Location: (File, Offset)

Interval Indexes

R4 4,21 -1 Next Record : p_next

RS 4.08 Hole Information:

R6 3.97 CRLlog | : Hole 1 (from 2.90t0 3.97)

- B leesd
_———— \- ------------ -

Figure 4: The CR-index structure

* Image taken from the paper

CR-Index

e Low index maintenance is needed to keep high write performance.

e CR-Index uses locality traits of observational data to create a pruning

based lightweight index.

O

Nearby records are bunched into blocks and described by a
boundary pair [min, max].

A block spans multiple records and a log of blocks is maintained.
A record in CR-index is called a CR-Record and contain: block ID,

boundary pair, hole information, block length and file position.

Insertion

e Directly append the record to the log store.
e The authors don't mention any optimum length of the number of

records in a CR-Record or any optimized construction algorithm.

Queries

e Point Queries are not made.

e Range Queries are transformed Intersection Checking.

e |f CR-Log fits into memory then a linear scan is performed.

e |f CR-Log does not fit into memory, we need to optimize as interval
based intersection queries tend to visit a lot of internal nodes.

e [Each Range Query is divided into two sub-queries:
Group A: CR-Records having at least one endpoint in query range.

Group B: CR-Records containing the query range.

Range Queries

e Group A: A B+-tree is used. Both the end-points of each CR-Record is
inserted into the tree and for a range query [a,b] we find one endpoint
and do a scan.

e Group B: A stabbing query representing the intersection query is used.
Maintain a segment tree of intervals and search a point d in between
[a,b].

e Join results from A and B.

e So, for every query only one path is taken in the tree.

Index Optimizations

[]
C— [e
S — o
(a) (b) L
[. J o)
*—=e [)
(c) (d)
I rrevious Interval [currentInterval I nserted Intervals
Delta Intervals
o

Need to insert 2 * CR-Records to
B+-tree.

This can be reduced by only
inserting the interval difference
between current block and
previous block and scanning the
next block for each result.

can be extended to previous k-
blocks

* Image taken from the paper

Width

Index Optimizations

{Em

TH

Hole Skipper

Length

The continuity assumption may not
be valid

Each CR-Record maintains
information about only top k holes
(to make records smaller).

Blocks with false positives have
holes and these holes are populated
at query time to not degrade write
performance.

* Image taken from the paper

Disordered Inserts

e Network delays may lead to disorder inserts.

e The system inherently doesn’t care about order within a CR-Record and
disorder across blocks is handled by the hole skipper.

e For time based queries, a memory based checkpoint list is created

which is used to find time ranges to search in.

Attribution

e All figures used in this presentation have been taken from http://www.
vldb.org/pvidb/vol7/p529-wang.pdf.

http://www.vldb.org/pvldb/vol7/p529-wang.pdf
http://www.vldb.org/pvldb/vol7/p529-wang.pdf
http://www.vldb.org/pvldb/vol7/p529-wang.pdf

